首页  >  科学研究  >  科研团队  >  正文
微纳功能材料与器件中心

微纳功能材料中心于2015年成立。团队负责人是简贤博士,主要成员有尹良君博士、慕春红博士、唐辉博士、Nasir Mahmood博士(兼职)。微纳功能材料与器件中心(CMD)”主要研究方向聚焦于国家战略需求的微波吸收、能源存储及转化器件,研究思路以材料-功能-器件-应用路线为牵引,培养一批勇于创新、积极进取、敢于担当、具有国际化视野的综合性人才。

目前CMD中心代表性装置及技术有:(1)石墨烯胶囊高通量合成技术,(2)二维单晶高通量制备装置及技术,(3)金属氧化物表面原位生长石墨烯胶囊技术,(4)原位Raman-ALD-CVD联用技术,(5)微弧氧化技术。CMD中心发展的新材料有:石墨烯胶囊、储能材料、二维单晶材料、发光材料、量子点材料、超高温陶瓷材料、巨介电陶瓷材料。CMD中心研究成果主要应用:微波吸收器件、清洁能源存储器件(锂离子电池、钠离子电池、超级电容器、传感器)、热障涂层、光催化领域、高介电材料电容器件。

CMD中心累计主持及参与国家级项目10余项,省部级项目4项,主研863项目1项,发表SCI学术论文累计150余篇,授权专利20余项。

团队成员:

   简贤博士:副研究员,主要研究领域涉及微波吸收材料、碳材料CVD合成,ALD-原位Raman表征、二维单晶材料、储能材料(超级电容器、锂离子电池等)研究。已发表30余篇SCI论文,代表性论文发表在ACS NanoAdvanced Energy Materials ACS Applied Materials & InterfacesChemical Engineering Journal CarbonCrystal Growth & DesignPCCPAPL等著名国际期刊上。申请国家发明专利5项;主持项目4项(含国家自然科学青年基金1项,中央军委科技委项目1项,四川省科技支撑项目1项,中国博士后面上项目1项);2015-2016年赴澳大利亚以高级访问学者做学术交流。

   尹良君博士:副教授,从事超高温陶瓷材料和发光材料的研发,并从原子尺度阐述机理,实现其在高技术、新能源领域中的应用,研究方向包括超高温陶瓷材料的设计和实现、高效半导体照明。已在Chem. Commun., J. Am. Ceram. Soc., opt. mater等权威SCI期刊上发表科研论文40余篇,授权国家发明专利5项,主持国家自然科学青年基金一项,于2015-2016期间获得国家留学基金委公派全额资助,赴荷兰代尔夫特理工大学进行博士后研究,从事半导体原子层沉积的研究工作。

   慕春红博士:副教授,主要从事巨介电陶瓷材料的研发工作,开发其在大容量储能器件以及柔性传感器等方向的应用。已发表SCI论文20余篇,申请国家授权发明专利5项,主持国家自然科学基金青年基金项目1项,四川省科技支撑项目2项,主研横向课题3项。 

      Nasir Mahmood博士:CMD团队兼职成员之一,于2015年在北京大学获得博士学位。分别在2015-2016年于澳大利亚卧龙岗大学和2016-2017年于中国天津大学担任研究员,目前在澳大利亚皇家墨尔本理工大学工作。他曾担任《Nanostructures for energy storage》、《Journal of Advances in Materials Science and Engineering》和《Energy materials》、《Journal of Electrical Engineering》主题编辑的客座主编。在包括Chem. Soc. Rev., Adv. Mater., Nano Today, Adv. Energy Mater., ACS Nano, Nano Energy, ACS Catalysis, Adv. Sci.等权威期刊上发表论文60余篇,总引用量超过3000次,H指数25。此外还有两项专利,三本著作。他的研究涉及纳米材料及其异质性纳米结构的合成,用于催化、环境、电子、能量转换和存储设备。



研究方向

(1)微波吸收材料:包括超高温陶瓷、石墨烯胶囊为主的微波吸收材料等。

2)清洁能源储能材料及器件:包括石墨烯胶囊为主的超级电容器、锂离子、钠离子电池,锂空气电池等。

3)能量转换材料及器件: 发光二极管(LED)、激光二极管(LD)和平板显示器件中,光转换材料作为关键材料,影响器件的能效和寿命,通过实验和计算相结合,提高器件光学性能。

4)超高温陶瓷的设计和实现,提升其在特殊领域的抗氧化性能。

5)微纳功能涂层和器件:主要包括金属表面陶瓷化、多层核壳结构功能纳米粒子等方面的研究。


学术成果

1. 石墨烯胶囊高通量制备技术

本产品石墨烯胶囊是一种新型碳材料,其具有三维空心结构,厚度范围0.68Å~100 nm,空心胶囊的直径范围20 nm~10 μm。石墨烯胶囊晶体结构介于无定形碳和石墨烯之间。以石墨烯材料为基本单元,构建三维的空心胶囊结构,将在催化、储能领域有广阔的应用。

1制备的碳纳米胶囊的代表性SEM图与HRTEM

2.高通量二维单晶炉装置搭建及二维单晶合成

高通量二维单晶炉装置实现了二维单晶的高通量可控制备同时也提升了高品质二维单晶的生产效率。

2 a)高通量二维单晶炉装置实物图,(bMX2二维单晶实物图和(c)单晶SEM

3. 高流明激光二极管陶瓷片的优化

首创材料表面微孔道设计,大幅提高材料吸光度,已在某激光器件上连续运行达5620小时。

             

 

3 高流明激光二极管陶瓷片实物图

 

4.柔性压力传感器

在制备巨介电CCTO纳米晶超细粉体的基础上,采用CCTO表面修饰处理技术,以及软模板造孔技术制备了CCTO/PDMS复合多孔膜,在此基础上研制出柔性电容式压力传感器。研究了复合比例、孔隙率对柔性膜力学性能和压力-电容信号的影响,开发出高灵敏度压力传感器,有望应用于人体脉搏信号的提取。

                         

 

4 CCTO/PDMS柔性多膜的(a)应力-应变曲线;(b)压力-电容测试装置;(c)压力-容灵敏度曲线;(d)传感器量程与CCTO含量之间的关系曲线;(e)压力-电容循环测试(3000);(f)压力-电容循环测试局部曲线。


由图可见,CCTO/PDMS柔性多孔膜具有超柔性,含量10%的样品其压缩模量仅为0.0115 MPa.采用此类柔性膜开发的电容式压力传感器灵敏度可以达到1.66 kPa-1,并且传感器显示出优异的循环压缩耐受性。传感器可用于可穿戴脉搏信号采集、小信号压力采集等场合。

代表性论文(Selected Publications

1.      Jian X, Wu B, Wei Y, et al. Facile synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties[J]. ACS applied materials & interfaces, 2016, 8(9): 6101-6109. (ESI高引,引用88次。)

2.      Mu C, Song Y, Huang W, et al. Flexible Normal‐Tangential Force Sensor with Opposite Resistance Responding for Highly Sensitive Artificial Skin[J]. Advanced Functional Materials, 2018.

3.      Jian X, Jiang M, Zhou Z, Zeng Q, Lu J, Wang D, et al. Gas-Induced Formation of Cu Nanoparticle as Catalyst for High-Purity Straight and Helical Carbon Nanofibers. ACS Nano. 2012;6(10):8611-9. (IF12.062)

4.      Jian X, Xiao X, Deng L, et al. Heterostructured Nanorings of Fe− Fe3O4@ C Hybrid with Enhanced Microwave Absorption Performance[J]. ACS applied materials & interfaces, 2018.

5.      Yin L J, Liang Y L, Zhang S H, et al. A novel strategy to motivate the luminescent efficiency of phosphor: drilling nanoholes on the surface[J]. Chemical Communications, 2018.

6.      Jian X, Liu S, Gao Y, et al. Facile Synthesis of Three-Dimensional Sandwiched MnO2@ GCs@ MnO2 Hybrid Nanostructured Electrode for Electrochemical Capacitors[J]. ACS applied materials & interfaces, 2017, 9(22): 18872-18882.

7.      Wu S, Lv W, Lei T, Han Y, Jian X, Deng M, & He, W. Distinctive Supercapacitive Properties of Copper and Copper Oxide Nanocrystals Sharing a Similar Colloidal Synthetic Route. Advanced Energy Materials, 2017, 7(14).

8.      Xian Jian, Gaofeng Rao, Zhicheng Jiang, Liangjun Yin et al.Mechanistic study of graphitic carbon layer and nanosphere formation on the surface of T-ZnO. Inorg. Chem. Front, 2017,4, 978 (IF4.04)

9.      Gaofeng Rao#, Xian Jian#, Weiqiang Lv#, Gaolong Zhu et al. A highly-efficient route to three-dimensional nanoporous copper leaves with high surface enhanced Raman scattering properties. Chemical Engineering Journal, 2017,321,394–400 (IF6.216)

10.  Xian Jian, GuozhangChen, Hongyang Liu, Nasir Mahmood, et al. Vapor− Dissociation−Solid Growth of Three-Dimensional Graphite-like Capsules with Delicate Morphology and Atomic-level Thickness Control. Cryst. Growth Des. 2016, 16, 5040−5048 (IF4.06)

11.  Hui Tang, Xian Jian, Biao Wu, Shiyu Liu, et al. Fe3C/helical carbon nanotube hybrid: Facile synthesis and spin-induced enhancement in microwave-absorbing properties. Composites Part B. 2016, 107, 51-58 (IF5.19)

12.  Jian X, Jiang M, Zhou Z, Yang M, Lu J, Hu S, et al. Preparation of high purity helical carbon nanofibers by the catalytic decomposition of acetylene and their growth mechanism. Carbon. 2010;48(15):4535-41. (IF:6.196)

13.  Jian X, Chen G, Wang C, Yin L, Li G, Yang P, et al. Enhancement in photoluminescence performance of carbon-decorated T-ZnO.Nanotechnology. 2015;26(12). (IF:3.821)

14.  Jian X, Chen X, Zhou Z, Li G, Jiang M, Xu X, et al. Remarkable improvement in microwave absorption by cloaking a micro-scaled tetrapod hollow with helical carbon nanofibers. Physical Chemistry Chemical Physics. 2015; 17(5):3024-31. (IF:4.493)

15.  Daeneke, T. ; Khoshmanesh, K.; Mahmood, N.; Alves de Castro, I.; Esrafilzadeh, D.; Barrow, S. J.; Dickey, M.D.; Kalantar-zadeh, K., Liquid Metals: Fundamentals and Applications in Chemistry, Chem. Soc. Rev., 2018, doi: 10.1039/C7CS00043J. (IF=38.618)

16.  Zhang, R.; Zhang, Y-C.; Pan, L.; Shen, G-Q.; Mahmood, N.; Ma, Y.; Shi, Y.; Jia, W.; Wang, L.; Zhang, X.; Xu, W.; Zou, J., Engineering Cobalt Defects in Cobalt Oxide for Highly Efficient Electrocatalytic Oxygen Evolution, ACS Catalysis, 2018, 8, 3803.(IF=10.614)

17. Zhang, J. W.; Si, G.; Mahmood, N.; Pan, L.; Zhang, X.; Zou, J., Oxygen-doped nanoporous carbon nitride via water-based homogeneous supramolecular assembly for photocatalytic hydrogen evolution , Appl. Catal. B: Environ., 2018, 221, 9-18. (IF= 9.446)

18.   Mahmood, N.; Yao, Y.; Zhang, Z.; Pan, L.; Zhang, X.; Zou, J., Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes: Mechanisms, Challenges, and Prospective Solutions, Adv. Sci., 2018, 1700464. (IF= 9.034)

19.  Tahir, M.; Pan, L.; Zhnag, R.; Wang, Y.; Shen, G.; Aslam, I.; Qadeer., M. A.; Mahmood, N.; Xu, W.; Wang, L.; Zhang, X.; Zou, J., High-Valence-State NiO/Co3O4 Nanoparticles on Nitrogen-Doped Carbon for Oxygen Evolution at Low Overpotential, submitted to  ACS Energy Lett., 2017, 2, 2177.

20.  Mahmood, N.; Zhang, C.; Liu, F.; Zhu, J.; Hou, Y., Hybrid of Co3Sn2@Co Nanoparticles and Nitrogen-Doped Graphene as a Lithium Ion Battery Anode, ACS Nano, 2013, 7, 10307-10318. (IF:12.062)

21.  Zhang, C.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y., Synthesis of Phosphorus-Doped Graphene and its Multifunctional Applications for Oxygen Reduction Reaction and Lithium Ion Batteries, Adv. Mater., 2013, 25, 4932-4937. (IF:17.49)

22.  Yin L J, Xie W J, Wang M, et al. Insight into the evolution mechanism of carbon film and Eu valence in carbon coated BaMgAl 10 O 17: Eu 2+ phosphor annealed in air[J]. Ceramics International, 2018.

23.  Yin L J, Cai C, Wang H, et al. Luminescent properties and microstructure of SiC doped AlON: Eu2+ phosphors[J]. Journal of Alloys and Compounds, 2017, 725: 217-226.

24.  L-J Yin, X Xu, W Yu et al., "Synthesis of Eu2+ Doped AlN Phosphors by Carbothermal Reduction," J. Am. Ceram. Soc. 2010, 93, 1702-1707.

25.  L-J Yin, W Yu, X Xu et al., "The Effects of Fluxes on AlN:Eu2+ Blue Phosphors Synthesized by a Carbothermal Reduction Method," J. Am. Ceram. Soc., 2011, 94, 3842-3846.

26.  L-J Yin, W Yu, X Xu et al., “Synthesis and photoluminescence of Eu, Mg-AlON phosphors by carbothermal reduction” J. Lumin., 2012, 132, 671–675.

27.  L-J Yin, Q-Q Zhu, W Yu et al., "Eu luminescence and its location in Eu solely doped AlN based phosphor" J. Appl. Phys., 2012, 111, 053534.

28.  L-J Yin, W-W Hu, X Xu et al., "Synthesis of pure AlON: Eu2+, Mg2+ phosphors by a mechanochemical activation route" Ceram. Int. 2013, 39, 2601-2604.

29.  L-J Yin *, G-Z Chen, Z-Y Zhou et al., " Improved Blue-Emitting AlN:Eu2+ Phosphors by Alloying with GaN”, J. Am. Ceram. Soc. 2015, 98, 3897–3904.

30.  G-Z Chen, L-J Yin*, et al.,“Synthesis, crystal structure and luminescence properties of Y4Si2O7N2: Eu2+ oxynitride phosphors” , J. Am. Ceram. Soc. 99, 183–190 (2016).

31.  L-J Yin*, J. T. Dong, et al., “Enhanced Optical Performance of BaMgAl10O17:Eu2+ Phosphor by a Novel Method of Carbon Coating”,J. Phys. Chem. C, 2016, 120, 23552361.

32.  L-J Yin*, W-W Ji, et al., “Intriguing luminescence properties of (Ba, Sr)3Si6O9N4: Eu2+ phosphors via modifying synthesis method and cation substitution”, J. Alloy. Compd. 2016, 120, 23552361.

33.  Liang-Jun Yin*, Benjamin Dierre, et al., "Transition of Emission Colours as a Consequence of Heat-Treatment of Carbon Coated Ce3+-Doped YAG Phosphors", Materials, 2017, 10, 1180 invited paper.

34.  Liang-Jun Yin*, Chao Cai, et al., "Luminescent properties and microstructure of SiC doped AlON: Eu2+ phosphors", J. Alloy. Compd., 2017, 725, 217.

35.  Xian Jian, Liang-Jun Yin*, et al., "Insight the Luminescence Properties of AlON: Eu, Mg Phosphor under VUV Excitation", Materials, 2017, 10, 723.

36.  Chunhong Mu, Yuanqiang Song, Haibin Wang, et al. Room temperature magnetic and dielectric properties of cobalt doped CaCu3Ti4O12 ceramics. Journal of Applied Physics, 2015, 117(17), 323.

37.  Chunhong Mu, Yuanqiang Song, Xiaoning Wang, et al. Kesterite Cu2ZnSnS4 compounds via electrospinning: A facile route to mesoporous fibers and dense filmsJournal of Alloys and Compounds, 2015, 645, 429-435.

38.  Chunhong Mu, Yuanqiang Song, Aifang Liu, et al. Electrospun Cu2ZnSnS4 microfibers with strong (112) preferred orientation: fabrication and characterization. RSC Advances, 2015, 5, 15749.

39.  Chunhong Mu, Hongxue Qi, Yuanqiang Son, et al. One-pot synthesis of Nanosheet-assembled hierarchical MoSe2/CoSe2 microcages for the enhanced performance of electrocatalytic hydrogen evolution. RSC Advances, 2016, 6, 23-30.

40.  Chunhong Mu, Yuanqiang Song, Kai Deng, et al. High Solar Desalination Efficiency Achieved with 3D Cu2ZnSnS4 Nanosheet-Assembled Membranes. Advanced Sustainable System, 2017, 1700064-1700064.

相关专利:

1.一种三明治结构MnO2@GCs@MnO2复合材料的制备方法。ZL201610071345.5

2.氧化铜纳米材料的制备方法。ZL201410257872.6

3.一种镍纳米催化剂制备螺旋碳纳米材料的方法。ZL201410628627.1

4.一种Cu2-xS热电材料的制备方法。ZL201510190458.2

5.一种碳包覆的BAMEu2+蓝色荧光粉及其制备方法。ZL2014 10608399.1

6.一种高纯、高亮度AlNEu蓝色荧光粉的制备方法。ZL2013 1 0539952.6

7.一种超细、高纯γ-AlON透明陶瓷粉末的制备方法。ZL2013 1 0472981.5

8.一种蓝光紫外连续可调的铝酸盐荧光粉及其制备方法。ZL20131 0472985.3

9.Eu2+掺杂Y4Si2O7N2蓝色荧光粉及制备方法。201410605722.X

10一种钛酸镁粉体的合成方法。 ZL201410050422.X

11.一种铅合金表面制备氧化钛陶瓷涂层的方法。ZL201310687935.7

12.一种铅板栅表面原位生长氧化铝和氧化铅陶瓷涂层的方法。ZL201310689711.X

13.钛酸铜钙/聚二甲基硅氧烷复合柔性泡沫及其制备方法和应用。2017101692319

14.一种摩擦力敏感的复合柔性电阻膜及其制备方法以及摩擦力传感器。2017101692319

15.一种低损耗、巨介电CCTO陶瓷材料及其制备方法。201711245607.6

 

学术专著Scholarly Books

1.      Mahmood, N.; Mahmood, A.; Islam, M., Handbook of Carbon Nanotubes-Polymer Nanocomposites, Lambert Publisher, 2014, ISBN: 987-3-659-64990-5.

2.      Zhang, C.; Mahmood, N.; Yin, H.; Hou, Y., Graphene-Based Nanomaterials for Energy Conversion and Storage, Chapter 2, Volume 6, Handbook of Carbon Nano Materials, 2014, ISBN: 978-981-4566-73-5.

3.      Zhu, J.; Mahmood, N.; Liu, F.; Hou, Y., Graphene-Based Polymer Nanocomposites in Electronics, Chapter 5: Graphene Polymer Nanocomposites for Fuel Cells, Springer, 2015, ISBN: 978-3-319-13875-6.





团队成员 3 人